The distance to a galaxy 14 billion light years away is taken to be the radius of a circle. Doubling it gives the diameter, and multiplying it by Pi gives the circumference. If we take the diameter of Earth's orbit to be the base of an equilateral triangle whose apex is also at the distant galaxy, then the base of this triangle can be treated as a portion of the circumference of the circle. The angle swept by the diameter of the Earth's orbit is then a fraction of the full 360 degree circle. This first swept angle a = 2.335934E-10 arc-seconds.
For a second galaxy located 100,000 light years closer, the swept angle b = 2.335950E-10 arc-seconds.
To resolve these two objects (as having different distances) requires a precision equal to the difference between the two swept angles, or 1.668536E-15 arc-seconds...
One femto-arcsecond is the required angular precision.
If they put as much effort into developing better instruments, as they have into hypothetical cosmologies, they would have better measurements by now.
Message Thread
« Back to index