Here are brief statements of the theorems for those interested:
Gödel's First Incompleteness Theorem states that "Any effectively generated theory capable of expressing elementary arithmetic cannot be both consistent and complete. In particular, for any consistent, effectively generated formal theory that proves certain basic arithmetic truths, there is an arithmetical statement that is true, but not provable within that theory."
Gödel's Second Incompleteness Theorem states that "For any effectively generated formal theory T including basic arithmetical truths and certain truths about formal provability, T includes a statement of its own consistency if and only if T is inconsistent."
Just prior to publication of his incompleteness results in 1931, Gödel already had proved the completeness of the First Order logical calculus; but a number-theoretic system consists of both logic plus number-theoretic axioms, so the completeness of PM and the goal of Hilbert's Programme (Die Grundlagen der Mathematik) remained open questions. Gödel proved (1) If the logic is complete, but the whole is incomplete, then the number-theoretic axioms must be incomplete; and (2) It is impossible to prove the consistency of any number-theoretic system within that system. In the context of Mr. Dean's discussion, Gödel's Incompleteness results show that any formal system obtained by combining Peano's axioms for the natural numbers with the logic of PM is incomplete, and that no consistent system so constructed can prove its own consistency.
What led Gödel to his Incompleteness theorems is fascinating. Gödel was a mathematical realist (Platonist) who regarded the axioms of set theory as obvious in that they "force themselves upon us as being true." During his study of Hilbert's problem to prove the consistency of Analysis by finitist means, Gödel attempted to "divide the difficulties" by proving the consistency of Number Theory using finitist means, and to then prove the consistency of Analysis by Number Theory, assuming not only the consistency but also the truth of Number Theory.
According to Wang (1981):
"[Gödel] represented real numbers by formulas...of number theory and found he had to use the concept of truth for sentences in number theory in order to verify the comprehension axiom for analysis. He quickly ran into the paradoxes (in particular, the Liar and Richard's) connected with truth and definability. He realized that truth in number theory cannot be defined in number theory, and therefore his plan...did not work."
As a mathematical realist, Gödel already doubted the underlying premise of Hilbert's Formalism, and after discovering that truth could not be defined within number theory using finitist means, Gödel realized the existence of undecidable propositions within sufficiently strong systems. Thereafter, he took great pains to remove the concept of truth from his 1931 results in order to expose the flaw in the Formalist project using only methods to which the Formalist could not object.
Gödel writes:
“I may add that my objectivist conception of mathematics and metamathematics in general, and of transfinite reasoning in particular, was fundamental also to my work in logic. How indeed could one think of expressing metamathematics in the mathematical systems themselves, if the latter are considered to consist of meaningless symbols which acquire some substitute of meaning only through metamathematics...It should be noted that the heuristic principle of my construction of undecidable number theoretical propositions in the formal systems of mathematics is the highly transfinite concept of 'objective mathematical truth' as opposed to that of demonstrability...” Wang (1974)
In an unpublished letter to a graduate student, Gödel writes:
“However, in consequence of the philosophical prejudices of our times, 1. nobody was looking for a relative consistency proof because [it] was considered that a consistency proof must be finitary in order to make sense, 2. a concept of objective mathematical truth as opposed to demonstrability was viewed with greatest suspicion and widely rejected as meaningless.”
Clearly, despite Gödel's ontological commitment to mathematical truth, he justifiably feared rejection by the formalist establishment dominated by Hilbert's perspective of any results that assumed foundationalist concepts. In so doing, he was led to a result even he did not anticipate - his second Incompleteness theorem -- which established that no sufficiently strong formal system can demonstrate its own consistency.
See also,
Gödel, Kurt "On Formally Undecidable Propositions of Principia Mathematica and Related Systems I" Jean van Heijenoort (trans.), From Frege to Gödel: A Sourcebook in Mathematical Logic, 1879-1931 (Harvard 1931)
Message Thread
« Back to index